Idaho National Laboratory's Role in The Nuclear Energy Future

August 7, 2003

A Long-Term Strategy for Nuclear Energy

Generation IV Nuclear Energy Systems: Nuclear Power for a New Century

Generation IV International Forum established in January 2000 to develop:

- ? Systems that offer significant advances towards:
 - Sustainability
 - Economics
 - Safety and reliability
 - Proliferation resistance and physical protection
- ? Systems that are deployable by 2030 or earlier

Generation IV Nuclear Energy Systems: Nuclear Power for a New Century

- ? In September 2002, the Generation IV International Forum selected six system concepts for further development:
 - Very High Temperature Reactor
 - Supercritical Water Cooled Reactor
 - Gas Cooled Fast Reactor
 - Lead Cooled Fast Reactor
 - Sodium Cooled Fast Reactor
 - Molten Salt Reactor
- ? In December 2002, the Generation IV Technology Roadmap was issued
 - Summarizes and prioritizes the R&D activities necessary to develop the six system concepts

December 2002

http://nuclear.gov/nerac/FinalRoadmapforNERACReview.pdf

A Long-Term Strategy for Nuclear Energy Generation IV Nuclear Energy Systems

Generation IV Thermal Reactors -- Gen IV "A"

- ? Thermal neutron systems
- ? Advanced, high burnup fuels
- ? High efficiency, advanced energy products
- ? Available by 2020

Generation IV Fast Reactors -- Gen IV "B"

- ? Fast neutron systems
- ? Proliferation-resistant closed fuel cycles
- ? Minimize long-term stewardship burden
- ? Available by 2040

Generation IV Nuclear Energy Systems Gen IV "A" Thermal Systems

Next Generation Nuclear Plant

- ? Very High Temperature Reactor
 - Thermal neutron spectrum and once-through cycle
 - High-temperature process heat applications
 - Coolant outlet temperature above 1,000°C
 - Reference concept is 600 MWth with operating efficiency greater than 50 percent

Heat

900-1,100°C

- ? Advanced Energy Production
 - High efficiency electricity generation
 - High efficiency hydrogen production via thermochemical water cracking

Likely Partners:

Oxygen

02

Generation IV Nuclear Energy Systems Gen IV "A" Thermal Systems

Supercritical Water-Cooled Reactor

- ? Thermal neutron spectrum and once-through cycle
- ? High-temperature, high-pressure system
- ? Operates above thermodynamic critical point of water
- ? Coolant outlet temperature of 550°C
- ? Reference concept is 1,700 MW_e with operating efficiency greater than 40 percent

Advanced Fuel Cycle Technologies: Application to Thermal Reactors

INL's Role in Gen IV "A"

- ? Lead development of critical technologies required for both reactor and fuel cycle systems
- ? Lead technical cooperation with other DOE labs, industry, and international community
- ? Assist in development of regulatory methods and requirements
- ? Support siting, construction, operation of demonstration reactors, and assume long-term ownership
- ? Complete demonstration of advanced fuel cycle technology for thermal reactors

Generation IV Nuclear Energy Systems Gen IV "B" Fast Systems

Gas-Cooled Fast Reactor

- ? Fast neutron spectrum and closed fuel cycle
- ? Efficient management of actinides and conversion of fertile uranium
- ? Potential pin- or plate-based fuel assemblies or prismatic blocks
- ? Reference concept 300-600 MW_e

Kingdom

Generation IV Nuclear Energy Systems Gen IV "B" Fast Systems

Lead-Cooled Fast Reactor

- ? Fast neutron spectrum and closed fuel cycle
- ? Efficient management of actinides and conversion of fertile uranium
- ? Proliferation-resistant, long-lived core
- ? Cooled by natural convection with outlet temperature of 600-800°C
- ? Reference concept 50-150 MW_e

Advanced Fuel Cycle Technologies: Application to Fast Reactors

INL's Role in Gen IV "B"

- ? Lead development of critical technologies required for both reactor and fuel cycle systems
- ? Lead technical cooperation with other DOE labs and the international community
- ? Site, construct, and operate any required test facilities or demonstration systems

Bottom Line

- ? DOE wants INL to be the top nuclear energy technology laboratory in the world within 10 years
- ? INL will need to work well with other labs, industry, universities, and the international community to accomplish its mission
- ? INL must also remain a strong multiprogram lab with special expertise in national security, homeland security, and vital areas of science and technology related to DOE's mission
- ? The key to success will be attracting and retaining talented, dedicated scientists and engineers who can make this mission a reality

WWW.NUCLEAR.GOV